Searching for alcoholism susceptibility genes using markov chain monte carlo methods
نویسندگان
چکیده
منابع مشابه
Searching for convergence in phylogenetic Markov chain Monte Carlo.
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropoli...
متن کاملSearching for efficient Markov chain Monte Carlo proposal kernels.
Markov chain Monte Carlo (MCMC) or the Metropolis-Hastings algorithm is a simulation algorithm that has made modern Bayesian statistical inference possible. Nevertheless, the efficiency of different Metropolis-Hastings proposal kernels has rarely been studied except for the Gaussian proposal. Here we propose a unique class of Bactrian kernels, which avoid proposing values that are very close to...
متن کاملSequentially Interacting Markov Chain Monte Carlo Methods
We introduce a novel methodology for sampling from a sequence of probability distributions of increasing dimension and estimating their normalizing constants. These problems are usually addressed using Sequential Monte Carlo (SMC) methods. The alternative Sequentially Interacting Markov Chain Monte Carlo (SIMCMC) scheme proposed here works by generating interacting non-Markovian sequences which...
متن کاملMarkov chain Monte Carlo methods in biostatistics.
Appropriate models in biostatistics are often quite complicated. Such models are typically most easily fit using Bayesian methods, which can often be implemented using simulation techniques. Markov chain Monte Carlo (MCMC) methods are an important set of tools for such simulations. We give an overview and references of this rapidly emerging technology along with a relatively simple example. MCM...
متن کاملParticle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions.Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Epidemiology
سال: 1999
ISSN: 0741-0395
DOI: 10.1002/gepi.1370170737